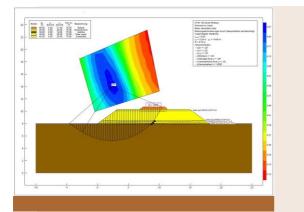
PROJECT DESCRIPTION EARTH- AND TRAFFIC ROUTE CONSTRUCTION RAILWAY EMBANKMENT

Project: Location: Year:

CTW 120 Jubail, Saudi Arabia 2012

Design of railway embankment over weak soil considering geogrid reinforcement


PROJECT DESCRIPTION

The CTW 120 railway track is located on the east coast of Saudi Arabia and connects the cities of Daman (south) and Jubail Industrial City (north) over a length of nearly 115 kilometres. The railway track is constructed on embankments with heights ranging from 1 to 33 meters. Around 21 km are constructed over Sabkha subsoil requiring additional geogrid reinforcement to increase bearing capacity, slope stability and reduce embankment settlement as well as differential settlement.

PROJECT FACTS

- Sabkha subsoil is characterised by high compressibility and low shear strength resulting in large deformations
- > Sensitivity depends on water content and loading
- SPT-N values of 0 to 5, relative density of 0.20 to 0.35
- > Low shear strength parameters ($\varphi = 30^\circ$, c = 10 kPa)
- ➤ Low stiffness modulus Es = 10 MN/m²
- The track is to be designed for design pressures up to 120 kPa according to RILEM
- > Allowable settlements limited to 5 cm at end of service life

OUR SERVICE

- Determination of representative cross sections for the embankment design
- Recommendations for soil and field testing
- > Design of geogrid reinforcement for the embankments
- Ultimate limit state (ULS) and serviceability analysis (SLS)
- ➢ Slope stability design according to BS 8006 and DIN 4084
- Settlement analysis by numerical methods; estimation of settlements during construction and use of railway track